Clearing Analysis on Phases: Exact Limiting Probabilities for Skip-free,

نویسندگان

  • Sherwin Doroudi
  • Brian Fralix
  • Mor Harchol-Balter
چکیده

A variety of problems in computing, service, and manufacturing systems can be modeled via infinite repeating Markov chains with an infinite number of levels and a finite number of phases. Many such chains are quasi-birth-death processes with transitions that are skip-free in level, in that one can only transition between consecutive levels, and unidirectional in phase, in that one can only transition from lower-numbered phases to higher-numbered phases. We present a procedure, which we call Clearing Analysis on Phases (CAP), for determining the limiting probabilities of such Markov chains exactly. The CAP method yields the limiting probability of each state in the repeating portion of the chain as a linear combination of scalar bases raised to a power corresponding to the level of the state. The weights in these linear combinations can be determined by solving a finite system of linear equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clearing Analysis on Phases: Exact Limiting Probabilities for Skip-free, Unidirectional, Quasi-birth-death Processes

A variety of problems in computing, service, and manufacturing systems can be modeled via infinite repeating Markov chains with an infinite number of levels and a finite number of phases. Many such chains are quasi-birth-death processes with transitions that are skip-free in level, in that one can only transition between consecutive levels, and unidirectional in phase, in that one can only tran...

متن کامل

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

Revisit to the tail asymptotics of the double QBD process: Refinement and complete solutions for the coordinate and diagonal directions

We consider a two dimensional skip-free reflecting random walk on a nonnegative integer quadrant. We are interested in the tail asymptotics of its stationary distribution, provided its existence is assumed. We derive exact tail asymptotics for the stationary probabilities on the coordinate axis. This refines the asymptotic results in the literature, and completely solves the tail asymptotic pro...

متن کامل

Modeling Leukemia in Children Using Phase-type Distribution

Background: In this study, with the aim of modeling Leukemia in children using Phase-type distribution, three transitional phases including diagnosis, brain metastasis and testis/ovary metastasis, and one absorotion phase of recovery/death have been considered. The distribution was fitted and the probabilities of death or recovery were determined based on the independent variab...

متن کامل

Exact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint

In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus,  it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017